
work in progress

Embedding a Full Linear Lambda Calculus in Haskell

Jeff Polakow

Abstract
We present an encoding of full linear lambda calculus in Haskell
using higher order abstract syntax. By making use of promoted data
kinds, multi-parameter type classes and functional dependencies,
the encoding allows Haskell to do both linear type checking and
linear type inference.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords linear lambda calculus, higher-order abstract syntax,
domain specific language

1. Introduction
Higher order abstract syntax (HOAS) [17] is, in general, a tech-
nique for specifying a system which makes direct use of the ab-
straction mechanism of the specification langauge. The idea was
explicitly stated and used in [7], although it’s origins go back to [3].
For the purposes of this paper (and most programming language
research), HOAS comes down to representing a binding structure
for an object language, e.g. lambdas in a lambda calculus, with the
binding structure of the meta-language, e.g. lambdas in the spec-
ification language. Here is a concrete example of representing a
lambda calculus in Haskell:

data Exp a where
Lam :: Exp a -> Exp b -> Exp (a -> b)
App :: Exp (a -> b) -> Exp a -> Exp b

Note that this example makes use of a generalized algebraic
datatype (GADT) [13] to describe a typed lambda calculus; we
will only consider typed object languages in this paper.

Using HOAS is very convenient as there is no explicit sub-
stitution in the object language; i.e. in the above there is no ex-
plicit representation for variables which are implicitly represented
by Haskell variables, nor any machinery for substituting an Exp
for a variable. However, HOAS tends to only work when the sys-
tem being described has the same substitution and typing behavior
as the specification language; in the preceding example, Haskell’s
function variables behave identically to the those of the lambda cal-
culus.

The purpose of this paper is to show that natural HOAS encod-
ings are indeed possible, at least in Haskell, for languages with rad-
ically different type systems (though with similar substitution) by

[Copyright notice will appear here once ’preprint’ option is removed.]

using tagless final encodings [2] along with some type-level ma-
chinery. The central idea is to explicitly represent (an abstraction
of) the variable environment which can be analyzed during type
checking/inference by the type class machinery.

In particular, this paper gives a HOAS encoding of a full linear
lambda calculus (LLC) including additives and units [15, 21]. The
encoding will allow the Haskell type checker to do both linear type
checking and linear type inference. We believe that this general
approach could be used to create HOAS encodings for a variety of
“exotically” typed languages.

An interesting aspect of the technique for representing linear
lambda caclulus is that it requires using multi parameter type class
with functional dependencies [8]; it cannot be done with (closed)
type families [4], at least not as currently implemented. Thus this
paper presents another data point in the ongoing discussion of the
design space for type class machinery, and perhaps an argument
against the current design of closed type families.

2. Tagless Final Encodings
Rather than describing an object language as values of a given
algebraic data type in the meta language, i.e. a data declaration
as in the introduction, tagless final encodings use terms of the meta
language to encode the object language.

class Exp repr where
lam :: (repr a -> repr b) -> repr (a -> b)
app :: repr (a -> b) -> repr a -> repr b

repr is an abstract type, representing an Exp term being con-
structed, which is decorated with the Haskell type of that Exp term.

The techniques employed in this paper to encode LLC should
transfer smoothly from a tagless final approach to an initial alge-
braic approach, like the GADT based example in section 1. How-
ever, we prefer the tagless final approach as it does not require
GADTs, and the type class machinery can be used to conveniently
give multiple concrete instantiations of the abstract type.

It is worth noting that the types of the Exp combinators cor-
respond to the typing rules for the simply typed lambda calculus
(thinking of ` as a function and Γ as implicit):

x :A ∈ Γ

Γ ` x :A
hyp

Γ, x :A ` e :B

Γ ` λx.e :A→ B
→I

Γ ` e0 :A→ B Γ ` e1 :A

Γ ` e0 e1 :B
→E

where, since we are using HOAS, the treatment of hypotheses is
handled implicitly for us by Haskell. We may think of constructing
a HOAS encoding as an exercise in transcribing the typing rules
of the object language into the types of the meta language. Since
Haskell offers reasonably convenient machinery for type level com-
putation, the door is open to creating HOAS tagless final encodings
of languages significantly different from Haskell. In the remainder
of this paper, we will show how to encode LLC using HOAS and
the tagless final approach.

linear lambda calculus 1 2015/7/21

x :A ` x :A
lvar

∆, x :A ` e :B

∆ ` λ̂x.e :A(B
(I

∆0 ` e0 :A(B ∆1 ` e1 :A

∆0 ./ ∆1 ` e0̂ e1 :B
(E

∆ ` () :>>I
∆ ` e0 :A ∆ ` e1 :B

∆ ` (e0, e1) :A&B
&I

∆ ` e :A&B

∆ ` fst e :A
&E0

∆ ` e :A&B

∆ ` snd e :B
&E1

Figure 1. Typing derivation rules for mini-LLC

3. Mini Linear Lambda Calculus
LLC can be thought of as the proof terms arising from a natural
deduction style presentation of intutionistic linear logic (ILL) [1].
In order to simplify the exposition, we will restrict ourselves to
the smallest fragment of LLC which captures the complexity of
linear type checking (and inference). We refer to this subset of
LLC as mini-LLC. Furthermore, we will gradually work up to this
complete fragment, developing the Haskell encoding as we go. For
reference, a presentation of full LLC is given in appendix A which
closely follows the presentation in [15]1.

The types of mini-LLC are as follows:

A ::= A0 (A1 linear functions
| A0 &A1 additive conjunction
| > additive unit

We will use capital letters, A,B, . . ., to stand for types.
The terms of mini-LLC are as follows:
e ::= x variables

| λ̂x.e | e0̂ e1 linear functions
| (e0, e1) | fst e | snd e additive conjunction
| () additive unit

We use the following judgement for typing derivations

∆ ` e :A

where ∆ is the linear variable context.
A variable context is a list of typed variables:

∆ ::= · | ∆, x :A

We will use ∆,Γ for contexts. We will sometimes overload , to
mean list append as well as list cons (as above); i.e. ∆1, x :A,∆2

denotes a list which contains x to the right of everything in ∆1 and
to the left of everything in ∆2.

We define the following non-deterministic merge which we will
use on linear contexts to allow exchange of linear hypotheses, i.e.
the order of linear hypotheses doesn’t matter:

· ./ · = ·
∆, x :A ./ ∆′ = (∆ ./ ∆′), x :A

∆ ./ ∆′, x′ :A′ = (∆ ./ ∆′), x′ :A′

In the following sections, we develop a HOAS encoding of
mini-LLC in Haskell. We will start with the multiplicative frag-
ment, i.e.(, in section 4, and then include the additive fragment,
i.e. & ,>, in section 5. The complete typing derivations for mini-
LLC are in figure 1.

1 Online at http://www.cs.cmu.edu/˜fp/courses/linear/lectures/lecture15.html

4. Multiplicatives
We begin with the implicational fragment, which just contains
linear functions and application. The basic derivation rules follow.

x :A ` x :A
lvar

A variable can only be used if there are no other variables in scope;
the lack of other variables prevents Weakening from holding, i.e.
variables must be used at least once.

∆, x :A ` e :B

∆ ` λ̂x.e :A(B
(I

∆0 ` e0 :A(B ∆1 ` e1 :A

∆0 ./ ∆1 ` e0̂ e1 :B
(E

The context split, when reading from conclusion to premises, pre-
vents Contraction from holding, i.e. variables must be used at most
once, since no variable can be copied into both premises. Addition-
ally, the context split is non-deterministic when reading from con-
clusion to premises2, which is the natural reading when considering
type checking, and inference, for a given term. Before attempting
a Haskell encoding, we will need to remove this non-determinism
from type checking.

4.1 IO system
To remove the non-determinism in the (E rule, we will rely on
a technique for linear logic proof search developed in the context
of linear logic programming [6]; the presentation and proofs used
throughout this section and section 5.1 are based on the develop-
ment of an ordered linear logic programming language [19]3, a
similar presentation directly on ILL can be found in [14]4.

The basic idea for removing the non-determinism is to lazily
split the context by passing all available variables to the first
premise and passing the remaining ones to the second premise.
Thus we use the following judgement:

∆I\∆O ` e :A

where ∆I are the input variables and ∆O are the output, i.e.
unused, variables. In order to ensure that all variables are indeed
consumed, we augment the linear context to be a list of variables
and placeholders, �:

∆ ::= · | ∆, x :A | ∆,�

This presentation of linear contexts as lists with placeholders
for consumed variables will be useful when we start writing our
Haskell code in section 4.2.

The derivation rules for the IO system follow:

∆, x :A,∆′\∆,�,∆′ ` x :A
lvar

Note that x is the only variable consumed (changed to a place-
holder), and all other elements of the input context appear un-
changed in the output context.

∆I , x :A\∆O,� ` e :B

∆I\∆O ` λ̂x.e :A(B
(I

The placeholder in the output context ensures that x really was
consumed in the derivation.

∆I\∆ ` e0 :A(B ∆\∆O ` e1 :A

∆I\∆O ` e0̂ e1 :B
(E

There is no longer a non-deterministic context split in the(E rule
and the typing derivations as a whole are deterministic.

2 The conclusion gives us no hint for splitting the context.
3 ILL is a subset of the ordered system.
4 Online at http://www.cs.cmu.edu/˜fp/courses/linear/lectures/lecture16.html

linear lambda calculus 2 2015/7/21

Before showing an encoding of the preceding system in Haskell,
we’d like to prove its correctness with respect to the previous
system in section 3. To that end, we define a super-context relation
to formalize the notion of superset on linear contexts:

· w ·
∆I w ∆O

∆I , x :A w ∆O,�

∆I w ∆O

∆I , x :A w ∆O, x :A

∆I w ∆O

∆I ,� w ∆O,�

IO system derivation rules maintain the following property.

Lemma 1. ∆I\∆O ` e :A implies ∆I w ∆O .

Proof. By induction on given derivation.

We also define context difference
· − · = ·

∆I ,� − ∆O,� = ∆I − ∆O

∆I , x :A − ∆O, x :A = ∆I − ∆O

∆I , x :A − ∆O,� = (∆I − ∆O), x :A

and show the following two useful properties of − and ./.

Lemma 2.
∆0 w ∆1 and ∆1 w ∆2 implies

∆0 −∆2 = (∆0 −∆1) ./ (∆1 −∆2).

Proof. By induction on the structure of the given derivations.

Lemma 3.
∆I −∆O = ∆0 ./ ∆1 implies
∃∆.∆I −∆ = ∆0 and ∆−∆O = ∆1

Proof. By induction on the length of ∆I .

We can now state and prove the correctness of the IO system in
two parts as follows.

Theorem 1.

∆I\∆O ` e :A implies ∆I −∆O ` e :A

Proof. By induction on the structure of the given derivation using
lemmas 1 and 2.

Theorem 2.

∆I −∆O ` e :A implies ∆I\∆O ` e :A

Proof. By induction on the structure of the given derivation using
lemma 3.

4.2 Haskell Encoding of Multiplicatives
We would like to use HOAS to encode the language of section
4.1, but the behavior of Haskell variables clearly does not match
that of linear variables. Although the typing rules do not match,
the binding and substitution of linear variables do follow that of
Haskell variables5; thus we can imagine a forgetful encoding of
LLC into Haskell where the linearity is enforced statically when
type checking but the underlying function is a regular Haskell
function.

newtype a -<> b = Lolli {unLolli :: a -> b}

5 We did not explicitly define substitution for LLC terms as it is identical to
subsitution on regular lambda calculus terms.

Such an encoding would just require enough information for the
type checker to decide whether a variable is being used linearly.
We will accomplish this by decorating our representation type with
an abstraction of the linear context.

We will make use of Haskell’s DataKinds extension [22] to get
a type level abstraction of the linear context

data Nat = Z | S Nat
data CtxElm = Box | Elm Nat

The information we need in our abstract linear context is just
whether a variable has been used; we don’t care about the type of
the variable. Thus, we will tag each in-scope linear variable with a
type level Nat, and store those tags in our abstract context. So our
abstract representation type will look like

repr :: Nat -> [CtxElm] -> [CtxElm] -> * -> *

We intend repr v i o a to represent a LLC term of type a, or
the derivation of a linear type a, with input (abstract) context i and
output (abstract) context o; the v is a counter for generating a new
tag.

Let us consider how to represent the(I rule, or linear function.
We’d like something of the form

llam :: (repr ? ? ? a ->
repr (S v) (Elm v ’: i) (Box ’: o) b

) -> repr v i o (a -<> b)

so that we have linear functions represented by Haskell functions
from a to b. How should the ?s be filled in? The lvar rule from
section 4.1 should be our guide, since that is the derivation rule
represented by the argument repr above. A direct transcription of
the lvar rule would be

type LVar repr v a =
forall (v’::Nat) (i::[CtxElm]) (o::[CtxElm]) .
Consume v i o => repr v’ i o a

which states that any i and o for which the constraint Consume v
i o holds can be used to form a derivation of the variable v of type
a. Consume is a type level relation specifying that v occurs in i and
is replaced by Box in o.

class Consume (v::Nat)
(i::[CtxElm])
(o::[CtxElm])

| v i -> o
class Consume1 (b::Bool)

(v::Nat)
(x::Nat)
(i::[CtxElm])
(o::[CtxElm])

| b v x i -> o

instance (Consume v i o)
=> Consume v (Box ’: i) (Box ’: o)

instance (EQ v x b, Consume1 b v x i o)
=> Consume v (Elm x ’: i) o

instance Consume1 True v x i (Box ’: i)
instance (Consume v i o)

=> Consume1 False v x i (Elm x ’: o)

class EQ (x::k) (y::k) (b::Bool) | x y -> b
instance EQ x x True
instance (b ~ False) => EQ x y b

The EQ typeclass encodes equality with respect to the Haskell type
checker’s unification machinery subject to the constraint solver’s

linear lambda calculus 3 2015/7/21

ability to make progress; i.e. if EQ x y b holds then x and y unify
and b will be ’True, or b will be ’False. This form of type
level equality which reflects unifiability is really necessary for our
encoding to work since Consume needs to realize that v does not
equal S v; note that EQ is a modern rendering of the TypeEq and
TypeCast type classes in [11].

We can now finish up our encoding of linear functions:

class LLC
(repr :: Nat -> [CtxElm] -> [CtxElm] -> * -> *)

where
llam :: (LVar repr v a ->

repr (S v) (Elm v ’: i) (Box ’: o) b
)

-> repr v i o (a -<> b)

(^) :: repr v i m (a -<> b)
-> repr v m o a
-> repr v i o b

Note that the type of ^ is a direct transcription of the(E rule.
Now we can try typing some example LLC terms

*Main> :t llam $ \f -> llam $ \x -> f ^ x
llam $ \f -> llam $ \x -> f ^ x

:: LLC repr => repr v i i ((a -<> b) -<> (a -<> b))

That is reassuring. However, when we try an ill-typed example:

*Main> :t llam $ \f -> llam $ \x -> f ^ x ^ x
llam $ \f -> llam $ \x -> f ^ x ^ x

:: (Consume (’S v) i o, LLC repr) =>
repr v i o ((a -<> (a -<> b)) -<> (a -<> b))

The Consume constraint can’t be further analyzed because we
haven’t constrained the input and output linear contexts. We need a
way to declare a closed linear term, or definition. We do not want
to simply require that our definitions have empty input and output
contexts since that would preclude using them in a context where
there are linear variables in scope. Instead, we want to declare that
definitions do not change their input linear context:

type Defn a = forall repr (v::Nat) (i::[CtxElm])
. LLC repr => repr v i i a

defn :: Defn a -> Defn a
defn x = x

Similar considerations prevent us from using the concrete Z instead
of v above.

Our first example still type checks

*Main> :t defn $ llam $ \f -> llam $ \x -> f ^ x
defn $ llam $ \f -> llam $ \x -> f ^ x
:: LLC repr => repr v i i ((a -<> b) -<> (a -<> b))

Now when we try our ill-typed example as a Defn term

*Main> :t defn $ llam $ \f -> llam $ \x -> f ^ x ^ x

<interactive>:1:42:
Could not deduce (Consume (’S v1) i1 i1) ...

we get the expected error6. The previous example shows that a
linear variable cannot be used twice; we can also check that linear
variables cannot be ignored:

*Main> :t defn $ llam $ \f -> llam $ \x -> f

<interactive>:1:34:
Could not deduce

6 We have elided the location information in the error.

(Consume1 ’False v1 (’S v1) (’Elm v1 : i1)
(’Box : ’Box : i1)

)

One interesting aspect of our encoding is that it cannot be done
with closed type families. The Consume type class is not equivalent
to the closed type family

type family ConsumeF (v::Nat)
(i::[CtxElm])

:: [CtxElm] where
ConsumeF v (Elm v ’: i) = Box ’: i
ConsumeF v (x ’: i) = x ’: ConsumeF v i

because the definition of apartness [4] does not allow ConsumeF v
(Elm (S v) ’: i) to rewrite7. Relying on universally quantified
type variables in the Defn type is critical for the encoding to be
compositional. In order to maintain a consistent style, we will
continue to use type classes for the rest of the paper.

5. Additives
We now consider the additive types. We will focus on the two
introduction rules, &I and >I , as the other rules do not add any
complexity to the typing derivations.

∆ ` () :>>I
∆ ` e0 :A ∆ ` e1 :B

∆ ` (e0, e1) :A&B
&I

The direct translations of the above rules into the IO system of
section 4.1 follow:

∆I w ∆O

∆I\∆O ` () :>>I

∆I\∆O ` e0 :A ∆I\∆O ` e1 :B

∆I\∆O ` (e0, e1) :A&B
&I

For completeness, we state the IO versions of the two &E rules:

∆I\∆O ` e :A&B

∆I\∆O ` fst e :A
&E0

∆I\∆O ` e :A&B

∆I\∆O ` snd e :B
&E1

Note that theorems 1 and 2 still hold when the additive rules are
included.

The IO >I rule introduces non-determinism into the IO typing
derivations since a term of type> can consume arbitrary variables.
Following the development in [6], we remove this non-determinism
by introducing a flag to keep track of whether the current linear
context has passed through a >I rule.

5.1 IO-> System
Our new judgements have the following form:

∆I\∆O `v e :A

where v is a boolean, either t or f . The> flag, v, denotes whether
there is a > somewhere in the derivation which could be used to
consume leftover variables in the output.

The >I rule is now deterministic

∆\∆ `t () :>>I

and effectively delays the choice of which variables the > con-
sumes by setting the > flag to t . The lvar rule then consumes its
variable as before and sets the > flag to f :

∆, x :A,∆′\∆,�,∆′ `f x :A
lvar

7 See http://ghc.haskell.org/trac/ghc/ticket/9918 for an in depth discussion.

linear lambda calculus 4 2015/7/21

The(I rule simply passes its > flag value on:

∆I , x :A\∆O,� `v e :B

∆I\∆O `v λ̂x.e :A(B
(I

However, if the > flag is t then it is ok if the linear variable was
not explicitly consumed; so we have another(I rule:

∆I , x :A\∆O, x :A `t e :B

∆I\∆O `t λ̂x.e :A(B
(It

Since a > in either premise of the (E rule can consume
a formula, the conclusion > flag is the disjunction of those in
premises:

∆I\∆ `v0 e0 :A(B ∆\∆O `v1 e1 :A

∆I\∆O `v0∨v1 e0 e1 :B
(E

The &I is now complicated by the presence of > in either
premise clouding which variables are actually in the output. Thus
we cannot simply require that both premises have the same output
context. Instead, we need to perform a kind of intersection on the
two output contexts to get a conclusion output which accurately
reflects which variables must have been consumed. We define linear
context intersection in the presence of > as follows:

· v0uv1 · = ·
∆0, x :A v0uv1 ∆1, x :A = (∆0 v0uv1 ∆1), x :A

∆0,� v0uv1 ∆1,� = (∆0 v0uv1 ∆1),�

∆0, x :A tuv1 ∆1,� = (∆0 tuv1 ∆1),�

∆0,� v0ut ∆1, x :A = (∆0 v0ut ∆1),�

We can then write the &I rule as follows:

∆I\∆0 `v0 e0 :A ∆I\∆1 `v1 e1 :B

∆I\(∆0 v0uv1 ∆1) `v0∧v1 (e0, e1) :A&B
&I

For completeness, we state the two &E rules:

∆I\∆O `v e :A&B

∆I\∆O `v fst e :A
&E0

∆I\∆O `v e :A&B

∆I\∆O `v snd e :B
&E1

We will now prove the correctness of the IO-> system with
respect to the IO system. We start with a useful property of v0uv1

Lemma 4.

1. ∆0 fuv ∆1 = ∆0 and ∆0 vuf ∆1 = ∆1

2. ∆0 w (∆0 v0uv1 ∆1) and ∆1 w (∆0 v0uv1 ∆1)

We can now state and prove the correctness of the IO-> system
in two parts as follows.

Theorem 3.
∆I\∆O `f e :A implies ∆I\∆O ` e :A

∆I\∆O `t e :A and ∆I w ∆ w (∆I −∆O)
implies ∆I\∆ ` e :A

Proof. By induction on the structure of the given derivation using
lemma 4.

Theorem 4.
∆I\∆O ` e :A and ∆ w ∆O implies

∆I\∆O `f e :A or ∆I\∆ `t e :A

Proof. By induction on the structure of the given derivation using
lemma 4.

We remark that an IO-> derivation with the > flag set to t can
be interpreted as a derivation in an affine type theory, i.e. each
hypothesis must be used at most once. Thus, we can trivially get
an affine lambda calculus from the IO-> system by changing the
lvar rule to set the > flag to t :

∆, x :A,∆′\∆,�,∆′ `t x :A

and leaving the other typing rules unchanged.

5.2 Haskell Encoding of Additives
The Haskell code for the multiplicatives in section 4.2 can be ex-
tended to encode the IO-> system by simply transcribing the ex-
tension from IO to IO-> judgments and rules. We start by encoding
the supporting machinery we will need.

class Or (x::Bool) (y::Bool) (z::Bool) | x y -> z
instance Or True y True
instance Or False y y

class And (x::Bool) (y::Bool) (z::Bool) | x y -> z
instance And False y False
instance And True y y

class MrgL (h1::[CtxElm]) (tf1::Bool)
(h2::[CtxElm]) (tf2::Bool)
(h::[CtxElm])

| h1 h2 -> h
instance MrgL ’[] v1 ’[] v2 ’[]
instance (MrgL h1 v1 h2 v2 h) =>

MrgL (x ’: h1) v1 (x ’: h2) v2 (x ’: h)
instance (MrgL h1 True h2 v2 h) =>

MrgL (Elm x ’: h1) True (Box ’: h2) v2 (Box ’: h)
instance (MrgL h1 v1 h2 True h) =>

MrgL (Box ’: h1) v1 (Elm x ’: h2) True (Box ’: h)

Note that we have collapsed two cases of the v0uv1 definition into
one MrgL instance.

In order to capture the two(I rules, we will use the following
relation

class VarOk (tf :: Bool) (v :: CtxElm)
instance VarOk True (Elm v)
instance VarOk True Box
instance VarOk False Box

which specifies the valid relations between the> flag and the newly
introduced linear variable in the output context. VarOk will be a
constraint on the llam method which lets us collapse the two(I

rules into one.
We can now write out the IO-> derivation rules in Haskell; we

will start by creating two new types:

type a & b = (a, b)
type Top = ()

We use type synonyms as & and> really do correspond to Haskell
pairs and unit. We next extend our repr type with a > flag

repr :: Nat -> Bool -> [CtxElm] -> [CtxElm] -> * -> *

We change the LVar definition to reflect that IO-> lvar rule:

type LVar repr v a =
forall (v’::Nat) (i::[CtxElm]) (o::[CtxElm]) .
Consume v i o => repr v’ False i o a

Now we add methods to LLC to represent the IO-> derivation rules:

class LLC
(repr :: Nat -> Bool

linear lambda calculus 5 2015/7/21

-> [CtxElm] -> [CtxElm] -> * -> *
)

where
llam :: VarOk tf var

=> (LVar repr v a ->
repr (S v) tf (Elm v ’: i) (var ’: o) b

)
-> repr v tf i o (a -<> b)

(^) :: (Or tf0 tf1 tf)
=> repr v tf0 i m (a -<> b)
-> repr v tf1 m o a
-> repr v tf i o b

top :: repr v True i i Top

(&) :: (MrgL h0 tf0 h1 tf1 o
, And tf0 tf1 tf
)

=> repr v tf0 i h0 a
-> repr v tf1 i h1 b
-> repr v tf i o (a & b)

pi1 :: repr v tf i o (a & b)
-> repr v tf i o a

pi2 :: repr v tf i o (a & b)
-> repr v tf i o b

Finally we modify Defn to apply to IO-> judgments:

type Defn tf a = forall repr (v::Nat) (i::[CtxElm])
. LLC repr => repr v tf i i a

defn :: Defn tf a -> Defn tf a
defn x = x

Now we can try to type an additive LLC term:

*Main> :{
*Main| :t defn $
*Main| llam $ \f -> llam $ \x -> llam $ \y ->
*Main| (f ^ x ^ y) & (f ^ y ^ x)
*Main| :}

<interactive>:44:13:
Could not deduce (MrgL i1 ’False i1 ’False i1)

It is not too hard to see from the error message8 that the problem lies
in the interaction of Defn and MrgL. We’ve put no constraints upon
the linear context, i, which the Defn passes through; so of course
the constraint solver does not know whether MrgL i ’False i
False i is valid. The solution is simply to place the appropriate
constraints in Defn. There are four combinations of > flag values
possible, so we have the following new Defn:

type MrgLs i = (MrgL i False i False i
, MrgL i False i True i
, MrgL i True i False i
, MrgL i True i True i
)

type Defn tf a =
forall repr (v::Nat) (i::[CtxElm]) .

(LLC repr, MrgLs i) => repr v tf i i a
defn :: Defn tf a -> Defn tf a
defn x = x

8 Again we have left out the location information.

where we have used constraint kinds [22] to abstract out of Defn
the four separate constraints. When we try our previous example
again:

*Main> :{
*Main| :t defn $
*Main| llam $ \f -> llam $ \x -> llam $ \y ->
*Main| (f ^ x ^ y) & (f ^ y ^ x)
*Main| :}
defn $

llam $ \f -> llam $ \x -> llam $ \y ->
(f ^ x ^ y) & (f ^ y ^ x)

:: (MrgL i ’True i ’True i
, MrgL i ’True i ’False i
, MrgL i ’False i ’True i
, MrgL i ’False i ’False i
, LLC repr
) =>
repr v ’False i i
((a -<> (a -<> b)) -<> (a -<> (a -<> (b & b))))

We get the expected type (although ghci inlines the MrgLs con-
straint definition). The following ill-typed example

*Main> :{
*Main| :t defn $
*Main| llam $ \f -> llam $ \x -> llam $ \y ->
*Main| (f ^ x ^ y) & (f ^ x)
*Main| :}

<interactive>:3:16:
Could not deduce

(MrgL (’Box : ’Box : ’Box : i1)
’False
(’Elm (’S (’S v1)) : ’Box : ’Box : i1)
’False
(’Box : ’Box : ’Box : i1))

behaves as expected9; so too does a well-typed example with >:

*Main> :{
*Main| :t defn $
*Main| llam $ \f -> llam $ \x -> llam $ \y ->
*Main| (f ^ x ^ y) & (f ^ top)
*Main| :}
defn $

llam $ \f -> llam $ \x -> llam $ \y ->
(f ^ x ^ y) & (f ^ top)

:: (MrgL i ’True i ’True i
, MrgL i ’True i ’False i
, MrgL i ’False i ’True i
, MrgL i ’False i ’False i
, LLC repr
) =>
repr v ’False i i
((Top -<> (a1 -<> a)) -<>

(Top -<> (a1 -<> (a & (a1 -<> a)))))

6. Unrestricted Functions
Up to this point, we have shown how to encode the mini-LLC of
section 3 using HOAS. In order to get an encoding of full LLC, de-
scribed in appendix A, we just need to show how to include unre-
stricted functions. Allowing both linear and unrestricted functions
introduces unrestricted variables which we will accomodate in a

9 This is actually the last of three errors, the other two arise from this one
and have to do with VarOk not having enough information since MrgL fails.

linear lambda calculus 6 2015/7/21

separate variable context; thus our typing judgments now have the
form:

Γ ; ∆ ` e :A

where is Γ is the unrestricted variable context.
The unrestricted function type adds three new typing derivation

rules:

Γ1, x :A,Γ2 ; · ` x :A
uvar

Γ, x :A ; ∆ ` e :B

Γ ; ∆ ` λx.e :A→ B
→I

Γ ; ∆ ` e0 :A→ B Γ ; · ` e1 :A

Γ ; ∆ ` e0 e1 :B
→E

Note the linear context must be empty in the uvar rule and, corre-
spondingly, in the minor premise of the→E rule.

Extending the IO and IO-> systems to accomodate unrestricted
variables is straightforward. We simply add an unrestricted context
to the typing judgments and translate the three→ derivation rules
accordingly; we shall only present the IO-> version as the IO
version is quite similar. Here is the IO-> judgment for full LLC:

Γ ; ∆I\∆O `v e :A

and here are the three→ IO-> rules:

Γ1, x :A,Γ2 ; ∆\∆ `f x :A
uvar

Note that uvar consumes no linear variables and sets the > flag to
f .

Γ, x :A ; ∆I\∆O `v e :B

Γ ; ∆I\∆O `v λx.e :A→ B
→I

Γ ; ∆I\∆O `v e0 :A→ B Γ ; ·\· `v′ e1 :A

Γ ; ∆I\∆O `v e0 e1 :B
→E

The →E enforces an empty linear context in the minor premise
by passing in an empty context; it would also be correct to use
∆O , or any context. This is in contrast to the uvar rule which
cannot require an empty context even though no linear formulas
can be consumed. The reason for the difference is that the →E

rule can “decide” the input context of its second premise, while
the uvar rule cannot control what input context it receives. For
reference, figure 2 contains the IO-> rules for mini-LLC plus
unrestricted functions. Note that theorems 1, 2, 3, and 4 can all be
trivially extended to apply to languages with unrestricted functions.
Additionally, the complete IO-> system for full LLC is given in
appendix B.

6.1 Haskell Encoding of Unrestricted Functions
Extending the Haskell code of section 5.2 to include unrestricted
functions is surprisingly easy. Since Haskell variables behave the
same as unrestricted variables, we may just transcribe the new
derivation rules without adding any new machinery.

type UVar repr a =
forall (v::Nat) (i::[CtxElm]) .
repr v False i i a

class LLC
(repr :: Nat -> Bool

-> [CtxElm] -> [CtxElm] -> * -> *
)

where
ulam :: (UVar repr a -> repr v tf i o b)

-> repr v tf i o (a -> b)

($$) :: repr v tf i o (a -> b)
-> repr v tf’ ’[] ’[] a
-> repr v tf i o b

Γ1, x :A,Γ2 ; ∆\∆ `f x :A
uvar

Γ, x :A ; ∆I\∆O `v e :B

Γ ; ∆I\∆O `v λx.e :A→ B
→I

Γ ; ∆I\∆O `v e0 :A→ B Γ ; ·\· `v′ e1 :A

Γ ; ∆I\∆O `v e0 e1 :B
→E

Γ; ∆, x :A,∆′\∆,�,∆′ `f x :A
lvar

Γ; ∆I , x :A\∆O,� `v e :B

Γ; ∆I\∆O `v λ̂x.e :A(B
(I

Γ; ∆I , x :A\∆O, x :A `t e :B

Γ; ∆I\∆O `t λ̂x.e :A(B
(It

Γ; ∆I\∆ `v0 e0 :A(B Γ; ∆\∆O `v1 e1 :A

Γ; ∆I\∆O `v0∨v1 e0 e1 :B
(E

Γ; ∆\∆ `t () :>>I

Γ; ∆I\∆0 `v0 e0 :A Γ; ∆I\∆1 `v1 e1 :B

Γ; ∆I\(∆0 v0uv1 ∆1) `v0∧v1 (e0, e1) :A&B
&I

Γ; ∆I\∆O `v e :A&B

Γ; ∆I\∆O `v fst e :A
&E0

Γ; ∆I\∆O `v e :A&B

Γ; ∆I\∆O `v snd e :B
&E1

Figure 2. IO-> derivation rules with unrestricted functions.

We elide the other methods of the LLC class which are unchanged
from section 5.2.

We now show some terms. We start with an ill-typed purely
linear term

*Main> :t defn $ llam $ \f -> llam $ \x -> f

<interactive>:1:34:
Could not deduce (VarOk ’False (’Elm (’S v1)))

which can be made well-typed by changing the inner function to
being unrestricted

*Main> :t defn $ llam $ \f -> ulam $ \x -> f
defn $ llam $ \f -> ulam $ \x -> f
:: (MrgL i ’True i ’True i

, MrgL i ’True i ’False i
, MrgL i ’False i ’True i
, MrgL i ’False i ’False i
, LLC repr
) =>
repr v ’False i i (b -<> (a -> b))

Next we’ll demonstrate that unrestricted application

*Main> :t defn $ llam $ \f -> llam $ \x -> f $$ x

<interactive>:1:34:
Could not deduce (VarOk ’False (’Elm (’S v1)))

requires an unrestricted argument

*Main> :t defn $ llam $ \f -> ulam $ \x -> f $$ x
defn $ llam $ \f -> ulam $ \x -> f $$ x
:: (MrgL i ’True i ’True i

linear lambda calculus 7 2015/7/21

, MrgL i ’True i ’False i
, MrgL i ’False i ’True i
, MrgL i ’False i ’False i
, LLC repr
) =>
repr v ’False i i ((a -> b) -<> (a -> b))

Appendix C contains a complete implementation of full LLC in
Haskell.

7. A Concrete Instance
Up to this point, we have been working with pure syntax; i.e. we
have been using methods of a type class with no actual instances.
One of the nice features of tagless final encodings is their flexi-
bility; they provide a convenient mechanism for isolating syntax
which can be re-used under different concrete interpretations. A
common interpretation of an object language syntax is its evalua-
tion, see [2, 10] for many examples. HOAS often leads to almost
trivial evaluation machinery since the object language tends to cor-
respond closely with the meta language.

Even though Haskell and LLC significantly differ, the LLC en-
coding developed in this paper enjoys a trivial evaluation interpreta-
tion. This is due to the forgetful nature of our encoding as remarked
in section 4.2; our linear functions are just regular haskell functions
with some constraints on the argument. The following code imple-
ments an interpreter for our LLC type class.

newtype Ev (v::Nat)
(tf::Bool)
(i::[CtxElm])
(o::[CtxElm])
a

= Ev {ev :: a}

instance LLC
(Ev :: Nat -> Bool

-> [CtxElm] -> [CtxElm] -> * -> *
)

where
llam f = Ev $ Lolli $ \x -> ev (f (Ev x))
f ^ x = Ev $ unLolli (ev f) (ev x)

ulam f = Ev $ \x -> ev (f (Ev x))
f $$ x = Ev $ ev f (ev x)

top = Ev ()

x & y = Ev $ (ev x, ev y)
pi1 = Ev . fst . ev
pi2 = Ev . snd . ev

We define the following top level evaluation function which checks
that a term is closed by instantiating the various types which make
up the linear constraint machinery.

eval :: Ev Z tf ’[] ’[] a -> a
eval = ev

The results of eval really are terms:

*Main> :{
*Main| putStrLn $
*Main| (unLolli . eval $ llam (\x -> x)) "hello"
*Main| :}
hello

The unLolli coercion is necessary since we defined -<> as a
newtype rather than a type synonym. If we made -<> a type syn-

onym we would alleviate the need for coercions and we’d still have
proper type inference; but Haskell would not be able to distin-
guish between -<> and -> and would accept bad type ascriptions,
i.e. llam (\x -> x) :: Defn False (a -> a) would be ac-
cepted.

8. Related work
Kiselyov presents a tagless final encoding of linear and unrestricted
lambdas in [10]10. However the encoding uses deBruijn indices
which complicate the presentation by requiring two type classes to
separate out derivation rules which require constraints on the output
linear context, e.g. the(I rule requires that the output context not
have the newly introduced variable. The use of deBruijn indices
additionally complicates the user experience.

The general idea of explicitly representing the context of in-
scope variables to allow HOAS representations in Haskell of lan-
guages with “fancy” types has been used in [9] to encode a staged
language with effects. The explicit contexts allow for type class ma-
chinery to statically ensure that various code generation techniques
are only applicable in safe contexts, i.e. where the generated code
will be well-typed.

9. Conclusions and Future Work
We have presented a HOAS encoding of a full LLC with multiplica-
tives, additives, and units. This encoding is fairly lightweight and
allows Haskell to do both linear type checking and linear type infer-
ence. The encoding relies upon standard representation techniques
from higher order logic programming and LF style logical frame-
works [5, 18]. We think this general approach would work well
for encoding other systems into Haskell such as an ordered LLC,
lambda box [16], or even languages with session types [12, 20].

We also think there might be uses of this encoding as an embed-
ded domain specific language. Since linear functions are directly
represented by Haskell functions, it seems possible that this em-
bedding could provide a reasonably lightweight mechanism to in-
corporate linear types into larger Haskell programs. We would like
to explore techniques for turning this into an EDSL as well as po-
tential uses of linear types in Haskell code.

We motivated, and proved correct, the translation of standard
non-deterministic linear typing derivations into deterministic typ-
ing derivations. However, we did not try to prove the correctness
of the Haskell encoding of the deterministic system. We would like
to explore methods for formalizing the correctness of our encoding
(and similar kinds of encodings) along the lines of the adequacy
results advocated in [5].

Additionally, since our encoding cannot be done with closed
type families, we have highlighted a concerete difference between
type classes and type families. Hopefully we have shown something
useful which is within the scope of type classes (with multiple
parameters, functional dependencies, and overlapping instances)
which is not possible with the current implementation of (closed)
type families.

10. Acknowledgements
We’d like to thank the anonymous reviewers for helpful comments,
and Oleg Kiselyov for helpful feedback and pointers to related
work.

References
[1] Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic.

University of Edinburgh, Department of Computer Science, Labora-

10 Code available at http://okmij.org/ftp/tagless-final/course/LinearLC.hs

linear lambda calculus 8 2015/7/21

tory for Foundations of Computer Science, 1996.

[2] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed
languages. Journal of Functional Programming, 19(05):509–543,
2009.

[3] A. Church. A formulation of a simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[4] Richard A Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations.
ACM SIGPLAN Notices, 49(1):671–683, 2014.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the ACM (JACM), 40(1):143–184, 1993.

[6] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic:
Theory, Design and Implementation. PhD thesis, University of Penn-
sylvania, Department of Computer and Information Science, 1994.

[7] G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica., 11(1):31–55,
1978.

[8] Mark P Jones. Type classes with functional dependencies. In Pro-
gramming Languages and Systems, pages 230–244. Springer, 2000.

[9] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung chieh Shan. Com-
binators for impure yet hygienic code generation. In Wei-Ngan Chin
and Jurriaan Hage, editors, PEPM, pages 3–14. ACM, 2014.

[10] Oleg Kiselyov. Typed tagless final interpreters. In Generic and
Indexed Programming, pages 130–174. Springer, 2012.

[11] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Proceedings of the 2004 ACM SIGPLAN
workshop on Haskell, pages 96–107. ACM, 2004.

[12] Sam Lindley and J.Garrett Morris. A semantics for propositions as
sessions. In Jan Vitek, editor, Programming Languages and Systems,
volume 9032 of Lecture Notes in Computer Science, pages 560–584.
Springer Berlin Heidelberg, 2015. .

[13] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for gadts.
In ACM SIGPLAN Notices, volume 41, pages 50–61. ACM, 2006.

[14] Frank Pfenning. Linear functional programming. Lecture 16 from a
course on Linear Logic., 2001.

[15] Frank Pfenning. Linear lambda calculus. Lecture 15 from a course on
Linear Logic., 2001.

[16] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical structures in computer science, 11(04):
511–540, 2001.

[17] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
ACM SIGPLAN Notices, volume 23, pages 199–208. ACM, 1988.

[18] Frank Pfenning et al. Logic programming in the lf logical framework.
Logical frameworks, pages 149–181, 1991.

[19] Jeff Polakow. Ordered linear logic and applications. PhD thesis,
Carnegie Mellon University, 2001.

[20] Bernardo Toninho, Luis Caires, and Frank Pfenning. Higher-order
processes, functions, and sessions: A monadic integration. In Pro-
ceedings of the 22Nd European Conference on Programming Lan-
guages and Systems, ESOP’13, pages 350–369, Berlin, Heidelberg,
2013. Springer-Verlag. .

[21] Philip Wadler. A taste of linear logic. In Mathematical Foundations
of Computer Science 1993, pages 185–210. Springer, 1993.

[22] Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Pey-
ton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães. Giving
haskell a promotion. In Proceedings of the 8th ACM SIGPLAN work-
shop on Types in language design and implementation, pages 53–66.
ACM, 2012.

A. Full Linear Lambda Calculus
Types

A ::= A0 (A1 linear functions
| A0 → A1 unrestricted functions
| !A unrestricted modality
| > additive unit
| A0 &A1 additive conjunction
| 1 multiplicative unit
| A0 ⊗A1 multiplicative conjunction
| 0 additive zero
| A0 ⊕A1 additive disjunction

We will use capital letters, A,B, . . ., to stand for types.

Terms
e ::= x variables

| λ̂x.e | e0̂ e1 linear functions
| λx.e | e0 e1 unrestricted functions
| !e | let !x = e0 in e1 unrestricted modality
| () additive unit
| (e0, e1) | fst e | snd e additive conjunction
| 〈〉 | let 〈〉 = e0 in e1 multiplicative unit
| 〈e0, e1〉 | multiplicative conjunction

let x⊗ y = e0 in e1
| abortA e additive zero
| inlAe | inrAe | additive disjunction

case e0 of inl x⇒ e1|inr x⇒ e2

Variable Contexts

Γ ::= · | Γ, x :A

We use Γ,∆ to stand for contexts. We will sometimes overload ,
to mean list append as well as list cons (as above); i.e. Γ1, x :A,Γ2

denotes a list which contains x to the right of everything in Γ1 and
to the left of everything in Γ2.

Non-deterministic Context Merge
· ./ · = ·

∆, x :A ./ ∆′ = (∆ ./ ∆′), x :A

∆ ./ ∆′, x′ :A′ = (∆ ./ ∆′), x′ :A′

Typing Judgement

Γ ; ∆ ` e :A

Typing Derivations

Γ ; x :A ` x :A
lvar

Γ ; ∆, x :A ` e :B

Γ ; ∆ ` λ̂x.e :A(B
(I

Γ ; ∆0 ` e0 :A(B Γ ; ∆1 ` e1 :A

Γ ; ∆0 ./ ∆1 ` e0̂ e1 :B
(E

Γ1, x :A,Γ2 ; · ` x :A
uvar

Γ, x :A ; ∆ ` e :B

Γ ; ∆ ` λx.e :A→ B
→I

Γ ; ∆ ` e0 :A→ B Γ ; · ` e1 :A

Γ ; ∆ ` e0 e1 :B
→E

Γ ; · ` e :A

Γ ; · ` !e : !A
!I

Γ ; ∆0 ` e0 : !A Γ, x :A ; ∆1 ` e1 :B

Γ ; ∆0 ./ ∆1 ` let !x = e0 in e1 :B
!E

linear lambda calculus 9 2015/7/21

Γ ; ∆ ` () :>>I

Γ ; ∆ ` e0 :A Γ ; ∆ ` e1 :B

Γ ; ∆ ` (e0, e1) :A&B
&I

Γ ; ∆ ` e :A&B

Γ ; ∆ ` fst e :A
&E0

Γ ; ∆ ` e :A&B

Γ ; ∆ ` snd e :B
&E1

Γ ; · ` 〈〉 :11I
Γ ; ∆0 ` e0 :1 Γ ; ∆1 ` e1 :C

Γ ; ∆0 ./ ∆1 ` let 〈〉 = e0 in e1 :C
1E

Γ ; ∆0 ` e0 :A Γ ; ∆1 ` e1 :B

Γ ; ∆0 ./ ∆1 ` 〈e0, e1〉 :A⊗B
⊗I

Γ ; ∆0 ` e0 :A⊗B Γ ; ∆1, x :A, y :B ` e1 :C

Γ ; ∆0 ./ ∆1 ` let x⊗ y = e0 in e1 :C
⊗E

Γ ; ∆ ` e :0

Γ ; ∆ ./ ∆′ ` abortC e :C
0E

Γ ; ∆ ` e :A

Γ ; ∆ ` inlBe :A⊕B
⊕Il

Γ ; ∆ ` e :B

Γ ; ∆ ` inrAe :A⊕B
⊕Ir

Γ ; ∆0 ` e0 :A⊕B Γ ; ∆1, x :A ` e1 :C
Γ ; ∆1, y :B ` e2 :C

Γ ; ∆0 ./ ∆1 ` case e0 of inl x⇒ e1|inr x⇒ e2 :C
⊕E

B. IO-> Derivations for Full Linear Lambda
Calculus

Variable Contexts

Γ ::= · | Γ, x :A | Γ,�
We use Γ,∆ to stand for contexts. We will sometimes overload , to
mean list append as well as list cons (as above); i.e. ∆1, x :A,∆2

denotes a list which contains x to the right of everything in ∆1 and
to the left of everything in ∆2.

Typing Judgement

Γ ; ∆I\∆O `v e :A

Typing Derivations

Γ; ∆, x :A,∆′\∆,�,∆′ `f x :A
lvar

Γ; ∆I , x :A\∆O, X `v e :B

Γ; ∆I\∆O `v λ̂x.e :A(B
(I

where X ≡ � or X ≡ x :A
and v ≡ f implies X ≡ �.

Γ; ∆I\∆ `v0 e0 :A(B Γ; ∆\∆O `v1 e1 :A

Γ; ∆I\∆O `v0∨v1 e0 e1 :B
(E

Γ1, x :A,Γ2 ; ∆\∆ `f x :A
uvar

Γ, x :A ; ∆I\∆O `v e :B

Γ ; ∆I\∆O `v λx.e :A→ B
→I

Γ ; ∆I\∆O `v e0 :A→ B Γ ; ·\· `v′ e1 :A

Γ ; ∆I\∆O `v e0 e1 :B
→E

Γ ; ·\· `v e :A

Γ ; ∆\∆ `f !e : !A
!I

Γ ; ∆I\∆ `v0 e0 : !A Γ, x :A ; ∆\∆O `v1 e1 :B

Γ ; ∆I\∆O `v0∨v1 let !x = e0 in e1 :B
!E

Γ; ∆\∆ `t () :>>I

Γ; ∆I\∆0 `v0 e0 :A Γ; ∆I\∆1 `v1 e1 :B

Γ; ∆I\(∆0 v0uv1 ∆1) `v0∧v1 (e0, e1) :A&B
&I

Γ; ∆I\∆O `v e :A&B

Γ; ∆I\∆O `v fst e :A
&E0

Γ; ∆I\∆O `v e :A&B

Γ; ∆I\∆O `v snd e :B
&E1

Γ ; ∆\∆ `f 〈〉 :1
1I

Γ ; ∆I\∆ `v0 e0 :1 Γ ; ∆\∆O `v1 e1 :C

Γ ; ∆I\∆O `v0∨v1 let 〈〉 = e0 in e1 :C
1E

Γ ; ∆I\∆ `v0 e0 :A Γ ; ∆\∆O `v1 e1 :B

Γ ; ∆I\∆O `v0∨v1 〈e0, e1〉 :A⊗B
⊗I

Γ ; ∆I\∆ `v0 e0 :A⊗B Γ ; ∆, x :A, y :B\∆O, X, Y `v1 e1 :C

Γ ; ∆I\∆O `v0∨v1 let x⊗ y = e0 in e1 :C
⊗E

where X ≡ � or X ≡ x :A
and Y ≡ � or Y ≡ y :B
and v1 ≡ f implies (X ≡ � and Y ≡ �).

Γ ; ∆I\∆O `v e :0

Γ ; ∆I\∆O `t abortC e :C
0E

Γ ; ∆I\∆O `v e :A

Γ ; ∆I\∆O `v inlBe :A⊕B
⊕Il

Γ ; ∆I\∆O `v e :B

Γ ; ∆I\∆O `v inrAe :A⊕B
⊕Ir

Γ ; ∆I\∆ `v0 e0 :A⊕B Γ ; ∆, x :A\∆1, X `v1 e1 :C
Γ ; ∆, y :B\∆2, Y `v2 e2 :C

Γ ; ∆I\(∆1 v1uv2 ∆2) `v case e0 of inl x⇒ e1|inr x⇒ e2 :C
⊕E

where v ≡ v0 ∧ (v1 ∨ v2)
and X ≡ � or X ≡ x :A
and Y ≡ � or Y ≡ y :B
and v1 ≡ f implies X ≡ �
and v2 ≡ f implies Y ≡ �.

C. Full Linear Lambda Calculus in Haskell
{-# LANGUAGE

ConstraintKinds,
DataKinds,
FlexibleContexts,
FlexibleInstances,
FunctionalDependencies,
KindSignatures,
MultiParamTypeClasses,
NoMonomorphismRestriction,
OverlappingInstances,
PolyKinds,
RankNTypes,
TypeFamilies,
TypeOperators,
UndecidableInstances
#-}

import Prelude hiding((^), (*), (+))

--
-- Linear types

linear lambda calculus 10 2015/7/21

--
newtype a -<> b = Lolli {unLolli :: a -> b}
newtype Bang a = Bang {unBang :: a}
type Top = ()
type a & b = (a, b)
data One = One
data a * b = Tensor a b
data a + b = Inl a | Inr b
data Zero

--
-- linear variable vid in Haskell context
--
type LVar repr (vid::Nat) a =

forall (v::Nat)
(i::[Maybe Nat])
(o::[Maybe Nat])

. Consume vid i o => repr v False i o a

--
-- unrestricted variable in Haskell context
--
type UVar repr a =

forall (vid::Nat)
(i::[Maybe Nat])

. repr vid False i i a

--
-- The syntax of LLC.
--
class LLC (repr :: Nat

-> Bool
-> [Maybe Nat]
-> [Maybe Nat]
-> *
-> *

) where
llam
:: (VarOk tf var)
=> (LVar repr vid a -> repr (S vid)

tf
(Just vid ’: i)
(var ’: o)
b

)
-> repr vid tf i o (a -<> b)

(^)
:: (Or tf1 tf2 tf)
=> repr vid tf1 i h (a -<> b)
-> repr vid tf2 h o a
-> repr vid tf i o b

ulam
:: (UVar repr a -> repr vid tf i o b)
-> repr vid tf i o (a -> b)

($$)
:: repr vid tf0 i o (a -> b)
-> repr vid tf1 ’[] ’[] a
-> repr vid tf0 i o b

bang
:: repr vid tf ’[] ’[] a
-> repr vid False i i (Bang a)

letBang
:: (Or tf0 tf1 tf)

=> repr vid tf0 i h (Bang a)
-> (UVar repr a -> repr vid tf1 h o b)
-> repr vid tf i o b

top
:: repr vid True i i Top

(&)
:: (MrgL h0 tf0 h1 tf1 o

, And tf0 tf1 tf
)

=> repr vid tf0 i h0 a
-> repr vid tf1 i h1 b
-> repr vid tf i o (a & b)

pi1
:: repr vid tf i o (a & b)
-> repr vid tf i o a

pi2
:: repr vid tf i o (a & b)
-> repr vid tf i o b

one
:: repr vid False i i One

letOne
:: (Or tf0 tf1 tf)
=> repr vid tf0 i h One
-> repr vid tf1 h o a
-> repr vid tf i o a

(*)
:: (Or tf0 tf1 tf)
=> repr vid tf0 i h a
-> repr vid tf1 h o b
-> repr vid tf i o (a * b)

letStar
:: (VarOk tf1 var0

, VarOk tf1 var1
, Or tf0 tf1 tf
)

=> repr vid tf0 i h (a * b)
-> (LVar repr vid a

-> LVar repr (S vid) b
-> repr (S (S vid))

tf1
(Just vid ’: Just (S vid) ’: h)
(var0 ’: var1 ’: o)
c

)
-> repr vid tf i o c

inl
:: repr vid tf i o a
-> repr vid tf i o (a + b)

inr
:: repr vid tf i o b
-> repr vid tf i o (a + b)

letPlus
:: (MrgL o1 tf1 o2 tf2 o

, And tf1 tf2 tf3
, Or tf0 tf3 tf
, VarOk tf1 var1
, VarOk tf2 var2
)

=> repr vid tf0 i h (a + b)
-> (LVar repr vid a -> repr (S vid)

linear lambda calculus 11 2015/7/21

tf1
(Just vid ’: h)
(var1 ’: o1)
c

)
-> (LVar repr vid b -> repr (S vid)

tf2
(Just vid ’: h)
(var2 ’: o2)
c

)
-> repr vid tf i o c

abort
:: repr vid tf i o Zero
-> repr vid True i o a

--
-- A definition for a closed LLC term.
--
type MrgLs i = (MrgL i False i False i

, MrgL i False i True i
, MrgL i True i False i
, MrgL i True i True i
)

type Defn tf a =
forall repr i vid
. (LLC repr, MrgLs i)
=> repr vid tf i i a

defn :: Defn tf a -> Defn tf a
defn x = x

{---

Type level machinery

---}

--
-- We will use type level Nats
--
data Nat = Z | S Nat

class Or (x::Bool) (y::Bool) (z::Bool) | x y -> z
instance Or True y True
instance Or False y y

class And (x::Bool) (y::Bool) (z::Bool) | x y -> z
instance And False y False
instance And True y y

--
-- Type level machinery for consuming a variable
-- in a list of variables.
--
class Consume (v::Nat)

(i::[Maybe Nat])
(o::[Maybe Nat])

| v i -> o
class Consume1 (b::Bool)

(v::Nat)
(x::Nat)
(i::[Maybe Nat])

(o::[Maybe Nat])
| b v x i -> o

instance (Consume v i o)
=> Consume v (Nothing ’: i) (Nothing ’: o)

instance (EQ v x b, Consume1 b v x i o)
=> Consume v (Just x ’: i) o

instance Consume1 True v x i (Nothing ’: i)
instance (Consume v i o)

=> Consume1 False v x i (Just x ’: o)

class EQ (x::k) (y::k) (b::Bool) | x y -> b
instance EQ x x True
instance (b ~ False) => EQ x y b

--
-- Type level machinery for merging outputs of
-- additive operations and getting right Top flag.
--
class MrgL (h1::[Maybe Nat])

(tf1::Bool)
(h2::[Maybe Nat])
(tf2::Bool)
(h::[Maybe Nat])

| h1 h2 -> h
instance MrgL ’[] v1 ’[] v2 ’[]
instance (MrgL h1 v1 h2 v2 h)

=> MrgL (x ’: h1)
v1
(x ’: h2)
v2
(x ’: h)

instance (MrgL h1 True h2 v2 h)
=> MrgL (Just x ’: h1)

True
(Nothing ’: h2)
v2
(Nothing ’: h)

instance (MrgL h1 v1 h2 True h)
=> MrgL (Nothing ’: h1)

v1
(Just x ’: h2)
True
(Nothing ’: h)

--
-- Check, in -<> type rule, that Top flag
-- was set or hypothesis was consumed.
--
class VarOk (tf :: Bool) (v :: Maybe Nat)
instance VarOk True (Just v)
instance VarOk True Nothing
instance VarOk False Nothing

linear lambda calculus 12 2015/7/21

