Declarative UIs are the Future — And the Future is Comonadic!

Phil Freeman
freeman.phil@gmail.com

class Functor w => Comonad w where
 extract :: w a -> a
 duplicate :: w a -> w (w a)

instance Comonad (Store s) where
 extract (Store here view) = view here
 duplicate (Store here view) = Store here (\next -> Store next view)

Figure 1. The Comonad type class and Store instance

Abstract
There are many techniques for the declarative specification of user interfaces, but it is not clear how to study their similarities and differences. The category-theoretic notion of a comonad captures some essential aspects of these specification techniques. The approach presented here generalizes several known techniques, but perhaps more interestingly, it also generates several new comonads as we search for ways to represent existing user interfaces.

Keywords Haskell, functional programming, specification, laziness, user interfaces, comonads

1. Motivation
Here is a simple model of a user interface: a user interface consists of a type of states, a value of that type which represents the initial state, and a function from states to views. This data is captured precisely by the Store comonad:

data Store s a = Store
 { here :: s
 , view :: s -> a
 }

We can move to a new state using a helper function:

move :: s -> Store s a -> Store s a
move s store = view (duplicate store) s

The duplicate function is taken from the Comonad type class (figure 1).

A comonad represents a (lazy) unfolding of all possible future states of our user interface, as well as the transitions allowed between those states. The extract function returns a value for the current state, and duplicate replaces each future state with its own structure of future states.

2. Specifications from Comonads
Kmett (2011) defines a monad Co w which is constructed from a comonad w. For our purposes, we think of its actions as selecting some possible future state from a collection of future states described by w. Figure 2 defines the Co w monad, and the select function which selects a future state.

We can now define a general framework for user interfaces. A specification for a user interface will be described by a comonad w which describes the type of reachable next states. The Co w monad for that comonad will describe the transitions which are allowed.

We can use the Co w monad to understand the user interfaces that we can describe using the comonad w.

An implementation would extract the current view at each state, and user events would be associated with state transitions via the Co w monad.

3. Examples
In this section, we will interpret several known comonads in this new context, and characterize the user interfaces that they describe. We will see that our approach generalizes some known techniques.

3.1 The Store Comonad
We have already seen that the Store s comonad provides a useful model of user interfaces with a state of type s.

The Co (Store s) monad is isomorphic to the usual State s monad, providing full read/write access to the cur-
rent state. In this sense, the \texttt{Store s} comonad is a very un-
restrictive model.

As an example, we can rewrite our \texttt{move} function from the
previous section in terms of \(\text{Co (Store s)}\):

\begin{verbatim}
moveT :: s -> Co (Store s) ()
moveT s = Co (\w -> view w s ())
\end{verbatim}

3.2 Moore Machines

Moore machines form a comonad:

\begin{verbatim}
data Moore i a = Moore a (i -> Moore i a)
\end{verbatim}

Transitions are restricted — in order to change state, the
user must provide an input of type \(i\).

This approach is similar to the Elm architecture \cite{Czaplicki2013}.

3.3 The Cofree Comonad

Moore machines are a special case of a \textit{cofree comonad}:

\begin{verbatim}
data Cofree f a = Cofree a (f (Cofree f a))
\end{verbatim}

Here, transitions can be precisely described by the choice
of some functor \(f\). It is possible to allow transitions limited
read/write access to the current state.

In fact, under certain conditions on \(f\), the \(\text{Co (Cofree f)}\)
monad is isomorphic to a free monad which is determined
by \(f\).

This approach is reminiscent of the approach taken in the
Halogen user interface library \cite{De Goes et al. 2015}.

4. Composing Specifications

In this section, we will work in the other direction, looking
for comonads which correspond to common patterns of
composition in user interfaces.

4.1 Sums

Given two user interfaces, a common pattern is to display
one or the other at a time, and to allow the user to switch
between the two.

To achieve this, we need to store all future states of
both user interfaces, and an additional bit of information to
indicate which user interface is currently visible. This data
is packaged in the following data type, which we observe to
be a \textit{Comonad}:

\begin{verbatim}
data Sum f g a = Sum Bool (f a) (g a)
\end{verbatim}

Theorem 1. \textit{The Sum of two comonads is itself a comonad.}

\textit{Proof.} See \cite{Freeman2017}.

4.2 Day Convolution

Another common pattern is to display two user interfaces
side-by-side, with their states evolving independently.

A comonad to specify such an interface would again need
to store all future states of both components, and we would
also need a function to render any two current states. This
data is captured by the \textit{Day convolution} \cite{Day1970} of the
two functors, expressed here as an \textit{existential data type}:

\begin{verbatim}
data Day f g a = forall x y. Day (x -> y -> a) (f x) (g y)
\end{verbatim}

The following result becomes necessary:

Theorem 2. \textit{The Day convolution of two comonads is itself
a comonad.}

\textit{Proof.} See \cite{Freeman2016}.

The \(\text{Co (Day f g)}\) monad for a Day convolution of
comonads is difficult to describe in general, but there exist
natural transformations from \(\text{Co f}\) and \(\text{Co g}\) to \(\text{Co (Day f g)}\)
which embed transitions for the individual components
as transitions for the composition.

4.3 Discussion

Here, we started with existing, common user interface patterns
and discovered new comonads. What other idioms lead to useful
\textit{Comonad} instances?

The Day convolution gives the category of comonads the
structure of a \textit{symmetric monoidal category}. Can this be
useful for studying user interfaces?

5. Conclusion

Comonads provide a way to generalize several approaches
to the specification of user interfaces, and compositions of
comonads correspond to compositions of those specifications.
This generalization suggests a principled approach to
the design and implementation of user interfaces, in which
the specifications themselves become the objects of study.

Acknowledgments

Many thanks to Edward Kmett and Jeff Polakow for providing
useful feedback, and to Arthur Xavier, for testing the
ideas presented here.

References

- E. Czaplicki, \textit{The Elm Architecture}, 2013 \url{guide.elm-lang.org/architecture}.
- Freeman, P., \textit{Comonads and Day Convolution}, 2016 \url{blog.functorial.com/posts/2016-08-08-Comonad-And-Day-Convolution.html}.
- Freeman, P., \textit{Comonads for Optionality}, 2017 \url{blog.functorial.com/posts/2017-10-28-Comonads-For-Optionality.html}.